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Active clusters in disordered systems
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We introduce an exact algorithm to calculate the distribution of large low energy clygieets in
disordered manifolds and disordered magnets, and we analyze the extent to which these clusters can be treated
as independent two-level systems. We show that interfaces in randomly diluted networks always have broad
droplet distributions, while diluted antiferromagnets in a field can have either power law or exponential droplet
distributions.[S1063-651X99)08110-9

PACS numbds): 02.70—-c, 05.50+(q, 64.60.Cn, 75.10.Hk

Analysis of many-body systems in the presence ofmay be flipped independently and so may be treated as inde-
quenched disorder remains one of the main challenges gfendent two-level systems. We call these regaxts/e clus-
statistical mechanickl]. In many cases disorder is relevant, tersand we calculate their probability. In addition, our algo-
so that ground state properties are expected to be typicdiithm shows that the active clusters are frequently made up
Due to a lack of self-averaging, metastability and the inabil-of subclustersvhich can only be flipped in a correlated way.
ity of traditional numerical methodé.g., Monte Carlpto In experimental systems there are small perturbations
navigate the rough low energy landscape, understanding a¥hich break the degeneracy of the model ground state and
these ground state problems has often relied upon dropl@evate the majority of the active clusters and subclusters out
scaling argumentf2] and the replica trick3]. Though im-  of the ground state. Moreover, if the perturbations are suffi-
portant, these methods contain unproven assumptions and/@iently small, the lowest lying excitations are the active clus-
questionable approximations and can lead to contradictoriers and subclusters found in the original degenerate ground
predictions. Motivated by this situation we and others areState. In addition, dynamical relaxation at low temperatures
relying more heavily on new numerical methods foris controlled by the energy barriers of the droplétdrop-
quenched disordered systems. In particu|ar, the ground Stal@tS” include the cluster excitations, and the correlated sub-
of Systems with quenched disorder may sometimes b@luster excitationb which are Iarge Compared to the differ-
mapped onto computationally fast combinatorial optimiza-€nces in energy caused by small perturbations. Thus the low
tion problemg[4]. Particularly fruitful are the relation of bi- temperature dynamics is dominated by the distribution of
partite matching to rigidity and connectivity percolatisl; active clusters and subclusters in the model system. We cal-
the application of min-cut/max-flow to random manifo[@§  culate the probability that droplets ofs” spins occur in
and random magnetg,S]; and the use of min-cost flow and random manifolds and in the DAFF on a bcc lattice, and then
matching algorithms in analyzing flux lines in random mediadiscuss the effect of these droplets on DAFF dynamics at
[9]. In this paper we extend the min-cut/max-flow method tolow temperatures.
find theexact low lying cluster excitationsf random mani- We illustrate the algorithm and the idea of active clusters
folds and diluted antiferromagnets in a field. using interfaces in the random bond Ising model with Hamil-

As is well appreciated, low lying droplet excitations exist tonian
in most disordered system®,10,11, including random
magnets and disordered manifolds. A rich phenomenology — L
has developed based on these ideas, along with experiments Hraim oz]) 357193 @
which support this general pictufé2]. Nevertheless, theo-
retical understanding remains ambiguous and controversidij is positive and random, and its statistics are drawn from
due to a lack of models in which these excitations may béhe  probability  distribution P(J;;)=pd(Jdi;—J)+(1
calculated convincingly. Here we study a class of models for-p) 6(J;;). We consider square lattices in which an interface
which the density and structure of large active clusters can b the{1,0} orientation is imposed by fixing the spins on the
calculated precisely. To enable this analysis we develop atwo opposite surfaces of the lattice. We then apply the
algorithm toexactlycalculate the ground state degeneracy ofmethod to the diluted antiferromagnet in a fiélIAFF) with
diluted antiferromagnets in a fieldAFF) and also mani- the Hamiltonian,
folds in diluted networks. The ground state degeneracy of
these “ideal” systems is due to a large number of regions _ B
which may be flipped without energy co&]. Even more HDAFF_J@E,») €i€7i9] hZ €idis @
importantly, our algorithm identifies those regions which

on a body-centered-cubitbco lattice, which is of direct
relevance to experiments on Ze; _,F, [12].
*Electronic address: bastea@pa.msu.edu Our algorithm builds upon the connection between the
"Electronic address: duxbury@pa.msu.edu ground state of several important random systems and the
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FIG. 1. (Color) (a) The interface mor-
phology in a diluted random bond Ising
model. The colored subclusters may be on
either the left hand side or the right hand
side of an interface without changing the
interface energy.(b) A reduced graph
formed from(a). In this example, only two
“clusters” exist (inscribed by dotted
lines), but there are 17 subclusters. Each
directed cufi.e., all arrows cross the cut in
the same directionis a valid minimum en-
ergy interface.



PRE 60 ACTIVE CLUSTERS IN DISORDERED SYSTEMS 4943

10* . . ; ‘ this plot there are two distributions. The subcluster distribu-
tion is the distribution ofsizes (hnumber of sites) each of
the different colored regions of Fig(d), excludingthe two
clusters attached to the surfadgsack and green in Fig.
1(a)]. Theclusterdistribution is also plotted in Fig. 2, and is
the size of regions which can be flipped independently, but it
does not include the correlated flipping of subclusters. The
distribution of droplet excitations lies between these two lim-
its. Clusters sometimes contain just one subcluster, but are
usually a combination of them. It is seen from Fig. 2, that
both the clusters and subcluster distributions have broad dis-
tributions [if we force a fit P(s)~1/s¥, theny~2] for a
range ofs, but then they saturate at largeThis saturation at
largesis due to the fact that with finite probability, there are
two or more degenerate interfaces which haeeoverlap

FIG. 2. The distribution of active cluste(slotted |Ine and of When such |arge rare fluctuations occur, a cluster of “exten-
subclustergsolid line) for interfaces in a bond-diluted square lattice gjye size” exists between the nonoverlapping degenerate in-
Ising model ap=0.8. The sample size is 480400, and the distri-  tarfaces. This leads to the flat tail in Fig. 2. The distribution
bution was found from accumulating data on 1600 conflguratlons.of active clusters is thus very broad, with extreme fluctua-

tions (extensive clustejsoccurring with finite probability in

min-cut/max-flow algorithm of combinatorial optimization large systems. This conclusion is robust to changes in the
[6—8,4. The min-cut/max-flow problem consists of finding boundary conditions and it persists when we extrapolate to
the maximum load which can be pushed through a networlnfinite lattices. Stated more precisely, there is a finite prob-
whose bonds each have a maximum capacity At each  ability Pe, that at least one extensive cluster exists for all
node, scalar flow is conserved. This problem has rather o> p., and in the infinite lattice limit. For example, we cal-
vious connections with a variety of transportation and com-<culated P, at bond concentratiop=0.8 for sample sizes
munications network problen{d.3]. The maximum flow is running fromL =25 toL =300, with at least 1000 samples at
limited by a manifold of saturated bonds which occurs in theeach system size. The value d?, saturates at the
direction transverse to the direction of net flow. On thisL-independent valueP,=0.15+0.01 for p=0.80 for all
manifold, the sum of the bond capacities is minimum. Forsample sizes greater thar= 200.
this reason it is called the minimum cut. To this point the The ground state we have described above is intermediate
algorithm is standard and has been extensively applii  between the ultrametric hypothesi3] and the droplet pic-
To find the ground state degeneracy we have to idealify ture[2]. There are degenerate nonoverlapping ground states
minimum cuts, i.e., more than a single manifold of bonds(though not an extensive numbdg] and there are broad
reaches capacity at the same time. Actually, all of the bonddistributions of active clusterg3]. Note, however, that de-
which reach capacity at the same time are given by the stargenerate ground states are not “ultrametrically related” as
dard algorithms for min-cut/max-floweither the augmenting “loops” occur in any attempt to form a “tree” representa-
path algorithm or the push-relabel algorithf3]. However, tion of the relationships between the ground sthtes., from
it is nontrivial to deduce from these bonds all the minimumFig. 1(a)].
cuts, i.e., the regions that the interface can move across in The diluted antiferromagnet in a fieldAFF) is a key
order to go from one degenerate cut to anotfeme Fig. model of disordered systems, as there are direct relations to
1(a@)]. In Fig. 1(a) there are regions which may be on either precisely controlled experimental systems such as
side of the Ising interface without changing the interface enfegZn; _,F, [12]. For high magnetic concentrations— 1,
ergy. We call these regions subclusters. However, not all o&dnd at high critical temperaturéahich implies low critical
these subclusters can be independently moved from one sidields) experiments indicate that the DAFF has a critical be-
of the interface to the other without paying an energy coshavior consistent with the random field Ising modeFIM),
(e.g.,J). That is, the subclusters are in genedabendent as predicted theoretical[yL1]. However the experiments, es-
Nevertheless there are groups of subclusters which are trulyecially at low magnetic concentrationge.g., p<0.60)
independent from each other and which act as two-level sysshow very slow relaxation, for example, in the excess mag-
tems(with the two states being on one side or the other ofnetization. We show that a broad distribution of active clus-
the interfacgé We call thesendependent regions clusterss  ters exists in DAFF, and that these clusters are one source of
we prove elsewhergl4], counting the number of degenerate the slow relaxation that is observed.
interfaces in the original random bond Ising modeBIM) The DAFF is given by Eq(2), with J>0 wheree; are
interface is equivalent to counting allirected cutsin the  quenched independent random variables distributed accord-
reduced graph of Fig. (h). Although this latter counting ing to P(€;)=xd8(€—1)+(1—x)5(e;) with the fraction of
problem is computationally hard, the reduced graph is suffimagnetic sites(Fe) being x. The experimental system is
ciently small to make the problem tractable for large Isingclosely modeled by Ising spins on a site-diluted body-
lattices. In this way we are able to find the exact ground stateentered cubic lattice with the nearest neighbor exchange
degeneracy8]. parameter being known quite accurat¢iys]. On bipartite

In Fig. 2, we plot the droplet distribution in the ground lattices, flipping the spins on one of the sublattices maps the
state of the square lattice RBIM with dilution disorder. In DAFF onto a bond diluted ferromagnetic Ising model in an
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FIG. 3. A representation of how to calculate the ground state
domain structure of a bimodal random field magnet using the min-
cut/max-flow method. All of the positive fields are connected to the  FIG. 4. The distribution of active clusters in the DAFF. From
source ), all the negative to the target)( There is a ferromag- 4000 configurations of 50body-centered-cubic lattices. Near the
netic exchange) between sites, and the amplitude of the randomcritical field (h=0.499p=0.31—top solid ling, and (1=3.001h
field is 3.5). Different hatched, filled, and open circles indicate =0.60—bottom solid ling there is a power law distribution of
different spin domains. The hatched circles are a degenerate clusterctive clusters. Away from the critical field there are still active

. . . . S clusters, but now the distribution falls off much more rapidty (
alternating field(fields are opposite on each sublatjicEhis —1.601p=0.31—top dotted lingand (1=0.139p=0.31—bottom
is a subclass of a more general problem which is solved byjzqhed ling

the min-cut/max-flow algorithni8]. The general problem

which is solved by this algorithm is a random bond Ising . . . .

model(with any range interaction, provided all couplings are =1 '“5 the barrier exponen.t anlis a (':,onstant.. The size of

ferromagneticin an arbitrary local fieldthe local fields can the “largest thermally active cluster” occurring during an

be either sigh One way in which min-cut/max-flow may be €XPeriment over time scateis estimated from

used to solve these problems is illustrated in Fig. 3 for a

square lattice. In this figure, positive local fields are con- t kBTIn( t )
A 7o

1y

)

. . . —efASz:b/(kBT)Nl SO S.~
nected to the target), while negative local fields are con- To c

nected to the sources). The minimum cut must choose

v_vhether to break_ the I!nes to the target or source, and ever\X/herero is the inverse of an attempt frequency. Clusters of
time it changes its mind, a ferromagnetic bond is broken

. : S . . . size s<s. are thermally active, while those of siz>s
This construction extends to bipartite lattices in three dimen- ¢ y ¢

. ) ; h ) remain frozen. If there is a power law of active clusters, it is
sions, e.g., to the body-centered cubic lattice, including th P

. . : %asy to show that logarithmic relaxati¢@] and 1f noise
degeneracy calculation discussed above for the mterfacEL6 17] should be typical in experiments. The advantage of
problem. ' )

We have carried out extensive calculations of the distri-the computational methods introduced here is that we can

! , . . explicitly calculate the distribution of droplets, the degree to
S:\::gzsoélilict:itclj\fs Cllgséﬁr(s:e:geg:etl):?g':ﬁ} iﬂe?ebigcalap;[g;eér atWhich they interact, and their explicit structure, and hence
law distribution of active clusters near the critical field. The provide detailed information about the origin of the fluctua-

exponent of these power law decavsvis 2 8. Well awa tions leading to logarithmic relaxation andf Ifoise in dis-
P . ep AW dECaysyts 2.o. Y ordered systems. The detailed analysis of the consequences
from the critical field, the distribution of active clusters de-

much more rapidlv than wer léstose to exponen- for experiments on diluted antiferromagnets will be dis-
;:igl);s uch more rapidly than a powe se to expone cussed elsewhere.

We have shown that both the random manifold problem We have presented precise calculations of the distribution

o of droplet excitations in two nontrivial disordered systems,
and the DAFF problem have broad distributions of droplet amely, random manifolds and the diluted antiferromagnet

at low tgmperatures. Both the independent two-level systenﬁ a field. In both cases, there are broad distributions of drop-
(the active clustejsand the dependent subclusters have thesFetS (active clusters which frequently act as independent

properties. If we consider only the mdepe_ndent t_Wo-Ieve wo-level systems.

systems, the response at low temperatures is described by the

droplet models of spin glassgg]. That is, a cluster contain- This work was supported by the DOE under Contract No.
ing s spins has an activation barrideg=As” [2], whereyy ~ DE-FG02-90ER45418.
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