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Active clusters in disordered systems
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We introduce an exact algorithm to calculate the distribution of large low energy clusters~droplets! in
disordered manifolds and disordered magnets, and we analyze the extent to which these clusters can be treated
as independent two-level systems. We show that interfaces in randomly diluted networks always have broad
droplet distributions, while diluted antiferromagnets in a field can have either power law or exponential droplet
distributions.@S1063-651X~99!08110-6#

PACS number~s!: 02.70.2c, 05.50.1q, 64.60.Cn, 75.10.Hk
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Analysis of many-body systems in the presence
quenched disorder remains one of the main challenge
statistical mechanics@1#. In many cases disorder is relevan
so that ground state properties are expected to be typ
Due to a lack of self-averaging, metastability and the ina
ity of traditional numerical methods~e.g., Monte Carlo! to
navigate the rough low energy landscape, understandin
these ground state problems has often relied upon dro
scaling arguments@2# and the replica trick@3#. Though im-
portant, these methods contain unproven assumptions an
questionable approximations and can lead to contradic
predictions. Motivated by this situation we and others
relying more heavily on new numerical methods f
quenched disordered systems. In particular, the ground
of systems with quenched disorder may sometimes
mapped onto computationally fast combinatorial optimiz
tion problems@4#. Particularly fruitful are the relation of bi-
partite matching to rigidity and connectivity percolation@5#;
the application of min-cut/max-flow to random manifolds@6#
and random magnets@7,8#; and the use of min-cost flow an
matching algorithms in analyzing flux lines in random med
@9#. In this paper we extend the min-cut/max-flow method
find theexact low lying cluster excitationsof random mani-
folds and diluted antiferromagnets in a field.

As is well appreciated, low lying droplet excitations ex
in most disordered systems@2,10,11#, including random
magnets and disordered manifolds. A rich phenomenol
has developed based on these ideas, along with experim
which support this general picture@12#. Nevertheless, theo
retical understanding remains ambiguous and controve
due to a lack of models in which these excitations may
calculated convincingly. Here we study a class of models
which the density and structure of large active clusters can
calculated precisely. To enable this analysis we develop
algorithm toexactlycalculate the ground state degeneracy
diluted antiferromagnets in a field~DAFF! and also mani-
folds in diluted networks. The ground state degeneracy
these ‘‘ideal’’ systems is due to a large number of regio
which may be flipped without energy cost@8#. Even more
importantly, our algorithm identifies those regions whi
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may be flipped independently and so may be treated as i
pendent two-level systems. We call these regionsactive clus-
tersand we calculate their probability. In addition, our alg
rithm shows that the active clusters are frequently made
of subclusterswhich can only be flipped in a correlated wa

In experimental systems there are small perturbati
which break the degeneracy of the model ground state
elevate the majority of the active clusters and subclusters
of the ground state. Moreover, if the perturbations are su
ciently small, the lowest lying excitations are the active clu
ters and subclusters found in the original degenerate gro
state. In addition, dynamical relaxation at low temperatu
is controlled by the energy barriers of the droplets~‘‘drop-
lets’’ include the cluster excitations, and the correlated s
cluster excitations!, which are large compared to the diffe
ences in energy caused by small perturbations. Thus the
temperature dynamics is dominated by the distribution
active clusters and subclusters in the model system. We
culate the probability that droplets of ‘‘s’’ spins occur in
random manifolds and in the DAFF on a bcc lattice, and th
discuss the effect of these droplets on DAFF dynamics
low temperatures.

We illustrate the algorithm and the idea of active clust
using interfaces in the random bond Ising model with Ham
tonian

HRBIM52(̂
i j &

Ji j s is j . ~1!

Ji j is positive and random, and its statistics are drawn fr
the probability distribution P(Ji j )5pd(Ji j 2J)1(1
2p)d(Ji j ). We consider square lattices in which an interfa
in the $1,0% orientation is imposed by fixing the spins on th
two opposite surfaces of the lattice. We then apply
method to the diluted antiferromagnet in a field~DAFF! with
the Hamiltonian,

HDAFF5J(̂
i j &

e ie js is j2h(
i

e is i , ~2!

on a body-centered-cubic~bcc! lattice, which is of direct
relevance to experiments on FexZn12xF2 @12#.

Our algorithm builds upon the connection between
ground state of several important random systems and
4941 © 1999 The American Physical Society
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FIG. 1. ~Color! ~a! The interface mor-
phology in a diluted random bond Isin
model. The colored subclusters may be
either the left hand side or the right han
side of an interface without changing th
interface energy.~b! A reduced graph
formed from~a!. In this example, only two
‘‘clusters’’ exist ~inscribed by dotted
lines!, but there are 17 subclusters. Ea
directed cut~i.e., all arrows cross the cut in
the same direction! is a valid minimum en-
ergy interface.
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min-cut/max-flow algorithm of combinatorial optimizatio
@6–8,4#. The min-cut/max-flow problem consists of findin
the maximum load which can be pushed through a netw
whose bonds each have a maximum capacityci j . At each
node, scalar flow is conserved. This problem has rather
vious connections with a variety of transportation and co
munications network problems@13#. The maximum flow is
limited by a manifold of saturated bonds which occurs in
direction transverse to the direction of net flow. On th
manifold, the sum of the bond capacities is minimum. F
this reason it is called the minimum cut. To this point t
algorithm is standard and has been extensively applied@13#.
To find the ground state degeneracy we have to identifyall
minimum cuts, i.e., more than a single manifold of bon
reaches capacity at the same time. Actually, all of the bo
which reach capacity at the same time are given by the s
dard algorithms for min-cut/max-flow~either the augmenting
path algorithm or the push-relabel algorithm! @13#. However,
it is nontrivial to deduce from these bonds all the minimu
cuts, i.e., the regions that the interface can move acros
order to go from one degenerate cut to another@see Fig.
1~a!#. In Fig. 1~a! there are regions which may be on eith
side of the Ising interface without changing the interface
ergy. We call these regions subclusters. However, not a
these subclusters can be independently moved from one
of the interface to the other without paying an energy c
~e.g., J). That is, the subclusters are in generaldependent.
Nevertheless there are groups of subclusters which are
independent from each other and which act as two-level
tems~with the two states being on one side or the other
the interface!. We call theseindependent regions clusters. As
we prove elsewhere@14#, counting the number of degenera
interfaces in the original random bond Ising model~RBIM!
interface is equivalent to counting alldirected cutsin the
reduced graph of Fig. 1~b!. Although this latter counting
problem is computationally hard, the reduced graph is su
ciently small to make the problem tractable for large Isi
lattices. In this way we are able to find the exact ground s
degeneracy@8#.

In Fig. 2, we plot the droplet distribution in the groun
state of the square lattice RBIM with dilution disorder.

FIG. 2. The distribution of active clusters~dotted line! and of
subclusters~solid line! for interfaces in a bond-diluted square lattic
Ising model atp50.8. The sample size is 4003400, and the distri-
bution was found from accumulating data on 1600 configuratio
rk
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this plot there are two distributions. The subcluster distrib
tion is the distribution ofsizes (number of sites)in each of
the different colored regions of Fig. 1~a!, excludingthe two
clusters attached to the surfaces@black and green in Fig.
1~a!#. Theclusterdistribution is also plotted in Fig. 2, and i
the size of regions which can be flipped independently, bu
does not include the correlated flipping of subclusters. T
distribution of droplet excitations lies between these two li
its. Clusters sometimes contain just one subcluster, but
usually a combination of them. It is seen from Fig. 2, th
both the clusters and subcluster distributions have broad
tributions @if we force a fit P(s);1/sy, then y;2# for a
range ofs, but then they saturate at larges. This saturation at
larges is due to the fact that with finite probability, there a
two or more degenerate interfaces which haveno overlap.
When such large rare fluctuations occur, a cluster of ‘‘ext
sive size’’ exists between the nonoverlapping degenerate
terfaces. This leads to the flat tail in Fig. 2. The distributi
of active clusters is thus very broad, with extreme fluctu
tions ~extensive clusters! occurring with finite probability in
large systems. This conclusion is robust to changes in
boundary conditions and it persists when we extrapolate
infinite lattices. Stated more precisely, there is a finite pr
ability Pe , that at least one extensive cluster exists for
p.pc , and in the infinite lattice limit. For example, we ca
culated Pe at bond concentrationp50.8 for sample sizes
running fromL525 toL5300, with at least 1000 samples
each system size. The value ofPe saturates at the
L-independent valuePe50.1560.01 for p50.80 for all
sample sizes greater thanL5200.

The ground state we have described above is intermed
between the ultrametric hypothesis@3# and the droplet pic-
ture @2#. There are degenerate nonoverlapping ground st
~though not an extensive number! @2# and there are broad
distributions of active clusters@3#. Note, however, that de
generate ground states are not ‘‘ultrametrically related’’
‘‘loops’’ occur in any attempt to form a ‘‘tree’’ representa
tion of the relationships between the ground states@e.g., from
Fig. 1~a!#.

The diluted antiferromagnet in a field~DAFF! is a key
model of disordered systems, as there are direct relation
precisely controlled experimental systems such
FexZn12xF2 @12#. For high magnetic concentrationsx→1,
and at high critical temperatures~which implies low critical
fields! experiments indicate that the DAFF has a critical b
havior consistent with the random field Ising model~RFIM!,
as predicted theoretically@11#. However the experiments, es
pecially at low magnetic concentrations,~e.g., p,0.60)
show very slow relaxation, for example, in the excess m
netization. We show that a broad distribution of active clu
ters exists in DAFF, and that these clusters are one sourc
the slow relaxation that is observed.

The DAFF is given by Eq.~2!, with J.0 wheree i are
quenched independent random variables distributed acc
ing to P(e i)5xd(e i21)1(12x)d(e i) with the fraction of
magnetic sites~Fe! being x. The experimental system i
closely modeled by Ising spins on a site-diluted bod
centered cubic lattice with the nearest neighbor excha
parameter being known quite accurately@15#. On bipartite
lattices, flipping the spins on one of the sublattices maps
DAFF onto a bond diluted ferromagnetic Ising model in

.
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alternating field~fields are opposite on each sublattice!. This
is a subclass of a more general problem which is solved
the min-cut/max-flow algorithm@8#. The general problem
which is solved by this algorithm is a random bond Isi
model~with any range interaction, provided all couplings a
ferromagnetic! in an arbitrary local field~the local fields can
be either sign!. One way in which min-cut/max-flow may b
used to solve these problems is illustrated in Fig. 3 fo
square lattice. In this figure, positive local fields are co
nected to the target (t), while negative local fields are con
nected to the source (s). The minimum cut must choos
whether to break the lines to the target or source, and e
time it changes its mind, a ferromagnetic bond is brok
This construction extends to bipartite lattices in three dim
sions, e.g., to the body-centered cubic lattice, including
degeneracy calculation discussed above for the inter
problem.

We have carried out extensive calculations of the dis
bution of active clusters in the DAFF on a bcc lattice,
various dilutions. In all cases~see Fig. 4!, there is a power
law distribution of active clusters near the critical field. T
exponent of these power law decays isy.2.8. Well away
from the critical field, the distribution of active clusters d
cays much more rapidly than a power law~close to exponen-
tial!.

We have shown that both the random manifold probl
and the DAFF problem have broad distributions of dropl
at low temperatures. Both the independent two-level syst
~the active clusters! and the dependent subclusters have th
properties. If we consider only the independent two-le
systems, the response at low temperatures is described b
droplet models of spin glasses@2#. That is, a cluster contain
ing s spins has an activation barrier,EB5Asc @2#, wherec

FIG. 3. A representation of how to calculate the ground st
domain structure of a bimodal random field magnet using the m
cut/max-flow method. All of the positive fields are connected to
source (s), all the negative to the target (t). There is a ferromag-
netic exchangeJ between sites, and the amplitude of the rand
field is 3.5J. Different hatched, filled, and open circles indica
different spin domains. The hatched circles are a degenerate clu
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,1 is the barrier exponent andA is a constant. The size o
the ‘‘largest thermally active cluster’’ occurring during a
experiment over time scalet is estimated from

t

t0
e2Asc

c/(kBT);1 so sc'FkBT

A
lnS t

t0
D G1/c

, ~3!

wheret0 is the inverse of an attempt frequency. Clusters
size s,sc are thermally active, while those of sizes@sc
remain frozen. If there is a power law of active clusters, it
easy to show that logarithmic relaxation@2# and 1/f noise
@16,17# should be typical in experiments. The advantage
the computational methods introduced here is that we
explicitly calculate the distribution of droplets, the degree
which they interact, and their explicit structure, and hen
provide detailed information about the origin of the fluctu
tions leading to logarithmic relaxation and 1/f noise in dis-
ordered systems. The detailed analysis of the conseque
for experiments on diluted antiferromagnets will be d
cussed elsewhere.

We have presented precise calculations of the distribu
of droplet excitations in two nontrivial disordered system
namely, random manifolds and the diluted antiferromag
in a field. In both cases, there are broad distributions of dr
lets ~active clusters! which frequently act as independe
two-level systems.

This work was supported by the DOE under Contract N
DE-FG02-90ER45418.
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FIG. 4. The distribution of active clusters in the DAFF. Fro
4000 configurations of 503 body-centered-cubic lattices. Near th
critical field (h50.499,p50.31—top solid line!, and (h53.001,h
50.60—bottom solid line!, there is a power law distribution o
active clusters. Away from the critical field there are still acti
clusters, but now the distribution falls off much more rapidlyh
51.601,p50.31—top dotted line! and (h50.139,p50.31—bottom
dashed line!.
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